Freyd’s Generating Hypothesis with Almost Split Sequences

نویسندگان

  • JON F. CARLSON
  • SUNIL K. CHEBOLU
چکیده

Freyd’s generating hypothesis for the stable module category of a nontrivial finite group G is the statement that a map between finitely generated kGmodules that belongs to the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. In this paper we show that Freyd’s generating hypothesis fails for kG when the Sylow p-subgroup of G has order at least 4 using almost split sequences. By combining this with our earlier work, we obtain a complete answer to Freyd’s generating hypothesis for the stable module category of a finite group. We also derive some consequences of the generating hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FREYD’S GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP

Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial p-group G if and only if G is either Z/2 or Z/3. We also give various conditions which ar...

متن کامل

THE GENERATING HYPOTHESIS FOR THE STABLE MODULE CATEGORY OF A p-GROUP

Freyd’s generating hypothesis, interpreted in the stable module category of a finite p-group G, is the statement that a map between finite-dimensional kG-modules factors through a projective if the induced map on Tate cohomology is trivial. We show that Freyd’s generating hypothesis holds for a non-trivial finite p-group G if and only if G is either C2 or C3. We also give various conditions whi...

متن کامل

Freyd’s Generating Hypothesis for Groups with Periodic Cohomology

Let G be a finite group and let k be a field whose characteristic p divides the order of G. Freyd’s generating hypothesis for the stable module category of G is the statement that a map between finite-dimensional kG-modules in the thick subcategory generated by k factors through a projective if the induced map on Tate cohomology is trivial. We show that if G has periodic cohomology then the gen...

متن کامل

On Freyd’s Generating Hypothesis

We revisit Freyd’s generating hypothesis in stable homotopy theory. We derive new equivalent forms of the generating hypothesis and some new consequences of it. A surprising one is that I, the Brown-Comenetz dual of the sphere and the source of many counterexamples in stable homotopy, is the cofiber of a self map of a wedge of spheres. We also show that a consequence of the generating hypothesi...

متن کامل

Local Theory of Almost Split Sequences for Comodules

We show that almost split sequences in the category of comodules over a coalgebra Γ with finite-dimensional right-hand term are direct limits of almost split sequences over finite dimensional subcoalgebras. In previous work we showed that such almost split sequences exist if the right hand term has a quasifinitely copresented linear dual. Conversely, taking limits of almost split sequences over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008